
Heat conduction page 1 

 

 
HEAT CONDUCTION 

 

Heat conduction modelling ........................................................................................................................... 1 
Case studies ........................................................................................................................................... 2 

Analytical solutions....................................................................................................................................... 3 

Conduction shape factor (steady state) ..................................................................................................... 3 
Reduction to the main dimension (steady state) ....................................................................................... 5 

Planar, cylindrical, and spherical energy sources, internal or interfacial ............................................. 6 
Multilayer composite walls ................................................................................................................... 7 

Critical radius ........................................................................................................................................ 8 
Rods and fins ......................................................................................................................................... 8 
Heat source moving at steady state along a rod .................................................................................. 11 

Reduction by dimension similarity (unsteady state) ............................................................................... 12 

Energy deposition in unbounded media .............................................................................................. 13 
Thermal contact in semi-infinite media .............................................................................................. 17 
Freezing and thawing .......................................................................................................................... 19 

Reduction by separation of variables ...................................................................................................... 20 

Unsteady problems in 1-D .................................................................................................................. 21 
Periodic solutions in 1-D..................................................................................................................... 26 

Steady problems in 2-D....................................................................................................................... 27 
Other analytical methods to solve partial differential equations ............................................................. 31 

Duhamel`s theorem ............................................................................................................................. 32 
Numerical solutions .................................................................................................................................... 32 

Global fitting ........................................................................................................................................... 34 
Lumped network ..................................................................................................................................... 37 
Spectral methods ..................................................................................................................................... 38 

Residual fitting ........................................................................................................................................ 38 
Collocation method ............................................................................................................................. 39 

Least square method (LSM) ................................................................................................................ 39 
Galerkin method .................................................................................................................................. 39 

Finite differences..................................................................................................................................... 40 
Finite elements ........................................................................................................................................ 44 
Boundary elements .................................................................................................................................. 45 

 

 

HEAT CONDUCTION MODELLING 

Heat transfer by conduction (also known as diffusion heat transfer) is the flow of thermal energy within 

solids and non-flowing fluids, driven by thermal non-equilibrium (i.e. the effect of a non-uniform 

temperature field), commonly measured as a heat flux (vector), i.e. the heat flow per unit time (and 

usually unit normal area) at a control surface.  

 

The basics of Heat Transfer (what is it, what for, its nomenclature, case studies, and the general view on 

how heat-transfer problems are solved and analysed), is to be found aside, and assumed already covered. 

As explained there, the solution to heat-transfer problems can be directly applied, with the appropriate 

change of variables, to mass-transfer problems. 
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The general equations for heat conduction are the energy balance for a control mass, d dE t Q W  , and 

the constitutive equations for heat conduction (Fourier's law) which relates heat flux to temperature 

gradient, q k T  . Their combination: 
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when applied to an infinitesimal volume, yield the partial differential equation (PDE) known as heat 

equation, or diffusion equation, as explained aside: 
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where the last two terms in (2) come from separating enthalpy changes in a temperature-dependent term 

(dH=VcdT), and the rest dH=Vdt (to account for a possible energy dissipation term,  [W/m3]), and a 

possible choice of coordinate system moving relative to the material at velocity v  (i.e., by splitting the 

convective derivative d dH t H t v H     ). Many times, thermal conductivity in (2) is to be found 

under the thermal diffusivity variable: a≡k/(c). 

 

In this presentation we embark into generic analytical and numerical methods to solve the heat conduction 

equations (2) within the bounding conditions of each particular problem (i.e., a PDE with some initial and 

boundary conditions, BC). It is worth to mention now that, in the theory of Heat Transfer, initial and 

boundary conditions are always neatly drawn, and great effort is devoted to solving the heat equation, 

whereas, in real Heat Transfer practice, initial and boundary conditions are so loosely defined that well-

founded heat-transfer knowledge is needed to model then, and solving the equations is just a computer 

chore. 

Case studies 

To better illustrate the different methods of solving heat-conduction problems, we are considering the two 

following paradigms: 

 Rod-heated-at-one-end. This is the heating-up of a metal rod in ambient air by an energy source 

at one end, as when holding a wire with our fingers from one end. To be more precise, we may 

think of an aluminium rod of length L=0.1 m and diameter D=0.01 m, being heated at one end 

with 
0Q =10 W (from an inserted small electrical heater), while being exposed to a ambient air at 

T∞=15 ºC with an estimated convective coefficient h=20 W/(m2∙K), and take for aluminium k=200 

W/(m∙K), =2700 kg/m3 and c=900 J/(kg·K). The name rod usually refers to centimetric-size 

elements; for much smaller rods, the word wire (or spine), is more common, and the word beam 

for much larger elements. This example is a quasi-one-dimensional unsteady heat-transfer 

problem, which has a non-trivial steady state temperature profile and demonstrates the tricky 

approximations used in modelling real problems (e.g. grasping a long thermometer at the sensitive 

end). 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c11/Heat%20and%20mass%20transfer.pdf
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 Cylinder-cooling-in-a-bath. This is the cooling-down of a hot cylinder in a water bath. To be 

more precise, we may think of a food can of length L=0.1 m and D=0.05 m in diameter, taken out 

of a bath at T1=100 ºC (e.g. boiling water) and submerged in a bath of ambient water at T∞=15 ºC 

with an estimated convective coefficient of h=500 W/(m2∙K), taking for the food k=1 W/(m∙K), 

=1000 kg/m3 and c=4000 J/(kg·K), and neglecting the effect of the thin metal cover. This is a 

three-dimensional unsteady problem of practical relevance in materials processing. 

ANALYTICAL SOLUTIONS 

Analytical solutions are, in principle, the best outcome for a problem, not because they are more accurate 

than numerical solutions (exactness is outside the physical realm), but because they are stricter, in the 

sense that the influence of the parameters is explicitly shown in the answer (i.e. they have far more 

information content).  

 

Analytical solutions to heat transfer problems reduce to solving the PDE (2), i.e. the heat equation, within 

a homogeneous solid, under appropriate initial and boundary conditions (IC and BC, which may include 

convective and radiative interactions with the environment). Many analytical solutions refer just to the 

simple one-dimensional planar problem obtained from (2) when dropping the dissipation and the 

convective terms, i.e. to the classical parabolic PDE: 
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and practically all analytical solutions refer to the much richer two-dimensional equation with heat 

sources and a possible relative coordinate-motion: 
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where n=1 for cylindrical geometries and n=2 for spherical geometries (n=0 for planar geometries like in 

(3)), and v is the velocity of the solid material relative to a z-moving reference frame (e.g. a travelling 

sample in a furnace, or o moving heater along a sample at rest). 

 

Several different approaches may be used to find analytical solutions to PDEs like (3) and (4): dimension 

reduction, reduction by similarity, separation of variables, Green's function integrals, Laplace transforms, 

etc., and, although this might be thought just a mathematical burden, it teaches a lot on thermal 

modelling, shows with little effort the key effect of boundary conditions, and provides reliable patterns 

against which practical numerical solutions (full of initial uncertainties) can be checked with confidence. 

Conduction shape factor (steady state) 

The generic aim in heat conduction problems (both analytical and numerical) is at getting the temperature 

field, T(x,t), and later use it to compute heat flows by derivation. However, for steady heat conduction 

between two isothermal surfaces in 2D or 3D problems, particularly for unbound domains, the simplest 
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way to present analytical solutions is by means of the so-called conduction shape factor S, defined by 

Q kS T  , that separates geometrical effects (S), from material effects (k), which appear mixed-up in the 

general equation Q KA T  .  

 

For instance, the shape factor between two parallel plates of frontal area A, separated a distance L (with 

A>>L2), is S=A/L, meaning that the heat transfer rate through a planar wall of thickness L is 

    1 2 1 2Q kS T T k A L T T    , as Fourier's law teaches. 

 

Table 1 gives some such shape factors, what may serve as recipes to solve some canonical heat-

conduction problems, but teach nothing on the subject (provide no insight for non-tabulated cases). 

Notice that symmetry can be applied to extend applications; e.g. we may wonder how hot would become 

a small electronic device sandwiched between two media, one of thermal conductivity k, and the other 

insulating (i.e. with a much lower k), when dissipating a power W ; the answer is that, at the steady state, 

the component will reach a temperature T1 such that  1 2W Q kS T T   , with S-values from (5) for a 

semi-infinity configuration, i.e. S=D for a hemispherical component, or S=2D for a thin disc shape (e.g. 

if a D=1 cm disc-shape chip dissipates W =10 W through a much larger silicon substrate of k=150 

W/(m·K) (with the other semi space made of insulating plastic), the chip temperature will rise T=

 W kS =10/(150·0.02)=3.3 K. 

 

Table 1. Conduction shape factors, S, defined by  1 2Q kS T T   at steady state*. 

Sphere, thin disc, or 

cube, to unbound 

medium  

S=2D for a sphere 

 S=4D for a thin disc 

S=8.24D for a cube 

(5) 
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unbound planar 
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Long cylinder between 

planar surfaces 
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Long cylinder within a 

coaxial cylinder 

(notice that 
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(11) 

Row of N long 

cylinders against 

planar surface 
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Long cylinder flush 

with a planar surface 
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Exercise 1. Heating of a 4·6 m2 room is achieved by 10 equally spaced hot-water pipes of 12 mm external 

diameter, 6 m long, buried 25 mm underneath the floor (at their axes). Assuming that the heating 

needed to keep an average of 21 ºC in the room is 3 kW, and values of k=1 W/(m·K) for the floor 

materials and h=10 W/(m2·K) for natural convection in air, find the required hot-water 

temperature and the temperature in the floor surface. 

Solution. By making use of the conduction shape factor in Table 1, for a row of long cylinders against 

planar surface, we have: 
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with the unknowns being T2 (pipe temperature) and T1 (floor temperature), and the data: T0=21 ºC, 

3000 WQ  , k=1 W/(m·K), L=6 m, a=W/N=4/10=0.4 m, and h=10 W/(m2·K), what yields S=175 

m, A=4·6=24 m2, and finally T1=50.6 ºC and T1=33.5 ºC. 

Reduction to the main dimension (steady state) 

We here refer to the simplification of real heat transfer problems when one can reduce the three-

dimensional spatial variations and time variation to just one dimension, usually one spatial dimension in 

the steady state (the spatially-homogeneous, time-changing problem is simpler). By the way, notice how 

different the bounding conditions in space and time can be; to the richness of 1D-spatial problems, 

conditions in time usually reduce to an initial value of the function at some time t=t0; that is why almost 

all numerical methods deal with time in the same simple manner of a time-advancing scheme. 

 

The heat equation (2), in steady state and one spatial dimension, reduces to  
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which has as fundamental solutions, assuming the volumetric energy-source  independent on position, 

those compiled in Table 2. Particular solutions are obtained by imposing two boundary conditions on the 

generic T(r)-expression, as done for the case with no sources (then the heat flow is the same through any 

distance), and for the case of sources with symmetrical boundary conditions. These solutions teach that 

one-dimensional temperature profiles are: 

 In the absence of internal sources: 

o Linear for planar geometry. 

o Logarithmic for cylindrical geometry. 

o Hyperbolic for spherical geometry. 

 

Planar, cylindrical, and spherical energy sources, internal or interfacial 

With a constant volumetric heat source, [W/m3], a parabolic additional term must be added in all three 

cases just described, as compiled shown Table 2. 

 

Table 2. Basic solutions for one-dimensional steady heat conduction, i.e. for Eq. (15). 

Geometry Generic T(r) Heat flow Central temperature*  

Planar (slab) 
2( )

2
T x Ax B x
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    
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*Central temperature, T0=T|r=0, for a given imposed surface temperature, Ts=T|r=R; centred 

coordinates for slabs, i.e. T0=T|x=0 and Ts=T|x=L/2. 

 

One application of these simple solutions may be to the heat flow through slender solid supports between 

two walls under vacuum, as for a conical stiffener between walls in a dewar flask. The one-dimensional 

approximation means that the planar frustum cone may be approximated to a spherical-caps frustum cone 

and, with reference to the cone apex, the cross-section area is A(r)=A1(r/r1)
2, and the temperature profile

     2

1 1 1 11 1T r T Qr kA r r   , where r1 is the radial position of the small face (of area A1 and 

temperature T1); notice that the heat flow is independent of r:      1 2 2 1 2 1Q r kr r T T r r   , where r2 is 

the radial position of the larger face, at temperature T2. 

 

If the heat source were interfacial instead of volumetric (i.e.  [W/m2].instead of  [W/m3]), and in case 

of symmetry, the steady solutions would be those presented in Table 3, obtained from (15) as before, but 

now with =0 and the boundary condition =kdT/dr|R+ at the interface, located at r=R. 

 

Table 3. Steady solutions for one-dimensional heat conduction with a symmetric interfacial heat source  

[W/m2]; in all cases T(rR)=TR=constant, and thus   0Q r R  . 
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Geometry Temperature profile Heat flux Heat flow   

Planar*  ( ) RT r R T r R
k


      q r R     Q r R A    (19) 

Cylindrical  ( ) lnR

R r
T r R T

k R


     

R
q r R

r
     2Q r R RL     (20) 

Spherical  

2 1 1
( ) R

R
T r R T

k R r

  
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 
  

2

2

R
q r R

r
     24Q r R R     (21) 

*The planar case refers to a semi-infinite solid with adiabatic wall at r=0 (or to a slab of thickness L 

with two symmetric interfacial dissipation at |r|=R<L/2), and x is often used instead of r as 

independent variable (centred midway in a finite slab). 

 

Exercise 2. Find the temperature profile in our rod-heated-at-one-end problem, if lateral heat losses to 

ambient air could be neglected (i.e. by a non-conducting shroud), and the only way out is through 

the other end. 

Solution. This is just a planar one-dimensional case, entirely similar to the slab-case in (16) from Table 2, 

with =0, which leads to a linear temperature profile and the boundary conditions of our case-

study: 
0Q =kA(T0TL)/L=10 W and kAdT/dx|x=L=kA(T0TL)/L=Ah(TLT), with our data: k=200 

W/(m∙K), A=D2/4=78·10-6 m2, h=20 W/(m2∙K) and T=15 ºC; i.e. two equations with two 

unknowns that yield T0=19 000 ºC and TL=6300 ºC, a great nonsense that one should have 

anticipated, since, the basic heat rate at the sink being 20 W/(m2∙K), one needs a T and an active 

surface A, satisfying 20.5 m ·KA T Q h   , and we have just a disc of D=1 cm to evacuate that 

heat. 

 

Exercise 3. Find the maximum temperature difference between the axis and the lateral surface, in our 

original rod-heated-at-one-end problem. 

Solution. This difference is expected to be negligible (that is why we approximate rods and fins by one-

dimensional heat-transfer problems). This is a cylindrical one-dimensional problem, as in (17), but 

with coefficient A=0 to avoid the singularity at the axis. We reasoned above (Exercise 8 in Heat 

and Mass Tranfer) that a lateral heat loss from a rod slice is equivalent to an internal heat sink in 

the way Adx=hpdx(TT∞), what can be directly substituted in (17): 
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for instance, if the surface temperature is TR=100 ºC, the radial jump from the centre to the 

periphery would be: 

 

    0

20 0.01/ 2
373 288 0.021 K

2 2 200
R R

hR
T T T T

k



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
      (23) 

 

i.e., a negligible temperature difference, as expected. 

Multilayer composite walls 

Up to now, and in most of what follows on analytical methods, we have focused on simple homogeneous 

systems. When the system under study comprises several different materials, one must solve each 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c11/Heat%20and%20mass%20transfer.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c11/Heat%20and%20mass%20transfer.pdf
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homogeneous part with unknown interface conditions and match the solutions for temperature and heat 

flow continuity. For one-dimensional configurations, two cases can be considered: 

 Layers in series. This is the normal case where heat flows through a layer and then through the 

next (i.e. perpendicular to the layers). An example was presented in Exercise 5 of Heat transfer, 

and another follows here. The general rule is that thermal resistances R T Q  add, like 

electrical resistances (R=V/I) in series, R=Ri; e.g. for heat flow across planar layers of thickness 

i and conductivities ki, the overall conductivity is k=i/i/ki). The ‘Critical radio’ analysis that 

follows gives additional examples of series resistances for non-planar geometries. 

 Layers in parallel. This is the case where heat flows parallel to several superimposed layers. The 

general rule in this case is that the inverse of thermal resistances 1G R Q T    add, like for 

electrical resistances in parallel, 1/R=1/Ri; e.g. for heat flow parallel to several layers of 

thickness i and conductivities ki, the overall conductivity is k=iki)/i.  

 

Example 1. Dew on window panes 

 

Critical radius 

An interesting effect in non-planar geometries may occur when adding an 'insulating' layer over a hot thin 

wire or small sphere, cooled to an ambient fluid; in those cases, it might happen that the increase in heat-

transfer area by the additional layer overcomes the effect of a small thermal conductivity of the shroud, 

giving way to a phenomenon known as critical radius. For instance, for a hot wire of radius R with a fixed 

temperature TR, exposed to an environment at temperature T, with which the convective coefficient is 

assumed constant, h, adding an insulating layer of conductivity k between R and r>R: 

 

    
( )

2 2 ( ) 2
1 1

ln ln

R RT T r T T
Q r R k L h rL T r T L

r r

R k R rh
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

 
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

 

 
min

2

1 1
0 0

Q

Q k
r

r rk r h h


      


 (24) 

 

The critical radius for spherical geometry is 
min

2
Q

r k h . As said before, these critical radii only matter 

when insulating small cylinders (R<k/h) and spheres (R<2k/h); e.g., for typical insulators (k=0.1 

W/(m·K)) in ambient air (h=10 W/(m2·K)), it only matters for wires and pipes smaller than 

k/h=0.1/10=10 mm. 

Rods and fins 

Many practical heat-transfer problems are not strictly one-dimensional and/or steady, but can be 

approximated as if they were. A common case is the heat transfer on rods, fins, and other extended 

surfaces often used to increase the heat-release rate. 

 

Consider a rod protruding from a hot base-plate (Fig. 1) and surrounded by some fluid which has a 

temperature T far from the rod. Assuming the thermal conductivity of the rod to be much greater than 

that of the fluid, heat would flow basically from the root outside along the rod, with some lateral heat 

losses to the ambient fluid. Taking a longitudinal element of differential length dx at some stage x from 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c11/Heat%20and%20mass%20transfer.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c11/Exercise1.pdf
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the root, its energy balance is of the form d d x x dx wetmc T t Q Q Q Q    , its mass being m=Adx,  

the rod-material density, A rod cross-section area (A=D2/4 for a circular rod), 
xQ kA T x   , 

 2 2 dx dxQ kA T x T x x
       
 

, and  dwetQ hp x T T   with p being the cross-section perimeter 

(p=D for a circular rod). The energy balance for that slice is thence: 

 

   2 2d d d
T

A xc kA T x kA T x T x x hp x T T
t

 


            
 

 

   
2 2

2

2 2

d
,

d

steadyc T T hp T hp
T T m T T m

k t x kA x kA


 

 
       

 
 (25) 

 

            
Fig. 1. a) Sketch of heat flow in a circular rod protruding from a hot base-plate and surrounded by a fluid, 

and a generic longitudinal differential element dx. b) A set of planar fins. 

 

A physical interpretation of the non-dimensional parameter mL is that it relates heat flow by convection in 

an isothermal fin,  conv 0Q pLh T T  , to heat flow by conduction along a laterally-insulated fin, 

 cond 0Q kA T T L  ; i.e. by substitution, (mL)2=hp/(kA)=
conv condQ Q . 

 

Solving the differential equation (25) in the steady state is straightforward, yielding a exponential 

function T(x)=Aexp(mx)+Bexp(mx), often set in terms of hyperbolic functions, whose coefficients are 

obtained by establishing the appropriate boundary conditions. For instance, for given root temperature 

(T0), and adiabatic end ( d d 0L x L
Q kA T x


   ), the solution is (T(x)T∞)/(T0T∞)= 

cosh(m(Lx))/cosh(mL), and the heat flow at the root is 
0Q =    0 tanhT T phkA mL . Often, a fin 

efficiency is defined as the ratio of  heat evacuated by the fin divided by the heat it would evacuate if all 

the fin was at the root temperature, i.e.   0 0Q pLh T T   =tanh(mL)/(mL), although it is a poor 

concept (it is just the corollary that the more conductive the fin, the best), without any indication of how 

to improve fin geometry. Another possibility is defining fin efficiency as the heat flow with fin, divided 

by the heat flow without fin (i.e. only by convection at the root area), but it only shows that the larger the 

fin, the better. For a given rot area available, a more interesting design consideration is the optimum 

number of fins, and fin geometry; total heat flow is proportional to the number of fins, but if placed too 

close, the assumption of independency is lost: the fluid flow in between becomes more difficult and the 

convective coefficient decreases. 

 

It is not difficult to extend the previous analysis to other fin configurations. Table 4 presents the most 

important cases. For instance, the effect of a uniform heat release of volumetric power  [W/m3] along the 

fin (e.g. to model a one-dimensional heater) can easily be added to (25); e.g., the solution of 
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d2T/dx2=m2(TT∞)+/k for Case 1 in Table 4 changes from (TT∞)/(T0T∞)=cosh(m(Lx))/cosh(mL)f to 

(TT∞)/(T0T∞)=f+(1f)/(km2(T0T∞)). For more general configurations, as non-uniform heat-source 

distributions (x), slowly-varying cross-section area A(x), variation on material properties (e.g. k(x)), and 

so on, the solution of the differential equation gets so complicated that it is wiser to resort to numerical 

simulation. 

 

Table 4. Some analytical solutions for the heat equation (25) along a rod, bar or wire, immersed in a fluid. 

Case Conditions Temperature profile End results 

1 

T(0)=T0 

d
0

d x L

T

x 

  

 

 0

cosh( )

cosh

m L xT x T

T T mL





   


  
 0

0

tanh
Q

mL
T T phkA




 

0LQ   

2 
T(0)=T0 

T(L)=TL 

 

 0

sinh( )

sinh

m L xT x T

T T mL





    


 

 

 0

sinh

sinh

L
mxT T

T T mL









 

     
0

00

1 1

tanh sinh

L
Q T T

mL T T mLT T phkA






 


 

     00

1 1

sinh tanh

L LQ T T

mL T T mLT T phkA






 


 

3 
0(0)Q Q  

( ) 0Q L   

 

 0

cosh( )

sinh

m L xT x T

mLQ phkA


     

 
0

(0) 1

tanh

T T

mLQ phkA


  

 
0

( ) 1

sinh

T L T

mLQ phkA


  

4 
0(0)Q Q  

( ) LQ L Q  

 

 0

cosh( )

sinh

m L xT x T

mLQ phkA


      

 

 0

cosh

sinh

L
mxQ

Q mL
  

   00

(0) 1 1

tanh sinh

LT T Q

mL Q mLQ phkA


   

   00

( ) 1 1

sinh tanh

LT L T Q

mL Q mLQ phkA


   

 

The combined problem of a fin with convection (h [W/(m2·K)]) and internal heat release ( [W/m3]), both 

uniform, allows close analytical solutions too; e.g. for a fin of length L, with equal temperature at both 

ends, kept constant, the differential formulation with x-origin centred  is: 

 

 
2

2

02
2

d
, with  and 

d
L

x

T hp
m T T T T m

x k kA


 

      (26) 

is: 

   
2

0 0

cosh cosh( ) 1
1

cosh cosh
2 2

mx mxT x T

mL mLT T T T m k



 

 
 
   

     
    
    

 (27) 

 

where it can be checked that, for =0, (27) recovers Case 2 of Table 4 (for equal ends), and for h=0 

(m=0), (27) recovers the Planar case of Table 2 (for equal ends with centred origin). 

 

Exercise 4. Find the steady temperature profile in our rod-heated-at-one-end problem. 
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Solution. This is just case 3 in Table 4, here re-elaborated as an exercise. We consider this problem to be 

one-dimensional and planar for heat conduction (along the axial direction), with internal heat sinks 

to account for the actual lateral heat losses by convection (i.e. with Adx=hpdx(TT∞), p being 

the cross-section perimeter and A the cross-section area), and apply (3) to an infinitesimal slice: 

 

    
2

2

2

d
d d d 0

d

tT T hp
cA x kA x T hp x T T T T

t x kA
  


       


 (28) 

 

with: 

 
  
 

0
0

0

coshd d
& 0 ( )

d d sinhx x L

m L xQT T
Q kA kA T x T

x x mkA mL


 


        (29) 

 

where /( )m hp kA , h being the convective coefficient, p the perimeter of the rod cross-section 

(D if circular), A the cross-section area (D2/4 if circular), and L the rod length. 

 

Exercise 5. A method to measure the thermal conductivity of non-metal slabs, consists on having a small 

copper disc (like a coin) lodged at level into a high-insulating wall, with thermocouples at both 

sides of the copper disc. When a thin sample slab (a plate), is sandwiched between a heat source at 

constant temperature (e.g. with boiling water), and the mentioned 'heat-meter', a transient heat-up 

takes place on the copper disc. If the temperature profile within the sample plate is assumed linear 

as in a quasi-steady state, and the temperature within the copper disc is uniform, find a 

relationship between the thermal conductivity of the sample, and the measured temperatures. 

Solution. The energy balance of the copper disc yields: 

 

 
  sample Cu0 CuCu 0 Cu

Cu Cu sample Cu

sample 0 Cu Cu Cu sample

dd

d

k AT TT T T
m c k A

t L T T m c L


   


 

 
sample Cu0 Cu

0 Cu,initial Cu Cu sample

( )
exp

k AT T t
t

T T m c L

 
      

 (30) 

 

which allows the computation of the thermal conductivity of the sample, ksample, by a simple linear 

fitting of the logarithm of cooper-temperatures versus time. 

Heat source moving at steady state along a rod 

In some heat-transfer applications, there is a relative motion between the material and the heat source. 

Consider a long and thin circular rod with a single coaxial heating-coil, as in Fig. 2a; the solution to this 

problem can also be applied to the case of a long rod partially within a semi-infinite furnace, as in Fig. 2b. 
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Fig. 2. Steady temperature profile in a rod moving with velocity v past a heating coil (a), or relative to a 

furnace (b), with heat transfer by conduction along the rod and by convection to an ambient fluid. 

Dotted lines (v=0) corresponds to no relative motion, and v<0 to the rod entering the furnace. 

 

The heat equation (2), for the steady case of a rod moving past a heating coil, and the corresponding 

boundary conditions, may be set like that: 

 

 2

2

0

00

d d
0

d d

for 0 = , =

for 0 = , =

x x

x x

hp T TT T
k cv

x A x

x T T T T

x T T T T



 

 


   


 


 



 (31) 

which has the solution: 

 

 
2 2

0 0

0

2 2
exp 1 1 , 1 1

2 2

T T xv am v am
Q kA T T

T T a v a v






                      
        

    

 (32) 

 

where the '' means that '+' should be taken for x>0 and '' applies for x<0, and, as before, /( )m hp kA , 

h being the convective coefficient, p the perimeter of the rod cross-section (D if circular), and A the 

cross-section area (D2/4 if circular). It can be verified that, in the limit of no relative motion (v=0), there 

heat flow in (32) becomes  0 0Q T T phkA   at each side of the origin, corresponding to case 1 of 

Table 4 for very long rods (mL>>1). 

Reduction by dimension similarity (unsteady state) 

Reduction by dimension similarity occurs when a partial differential equation can be converted to an 

ordinary differential equation in a combined variable, due to lack of characteristic lengths and times. For 

instance, for v==0, the partial differential equation (PDE) (3) transforms to an ordinary differential 

equation (ODE): 

 

 
  2

2

,
41 1 d ( ) d ( )

0 2 0
d d

n

n

r
r t

atT T T n T
r

r r r a t

    


     

   
        

   
       (33) 

 

which can be solved in general in terms of hypergeometric functions, and, in particular, for each space 

dimension, in terms of the error function,    2

0
erf ( ) 2 exp d

x

x x x  , and the exponential integral, 

 
x

-
Ei( ) exp dx x x x


    , as detailed below. 

 

 Planar solutions. Solving (33) with n=0 yields T()=A+Berf(), but, because of the linearity of 

ad2T/dx2dT/dt=0, not only that function but its partial derivatives to any order in x and t will be 

solutions to (33),and in particular ∂erf()/∂x and ∂erf()/∂t, namely: 
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 

 

 

2

2

, erf
4

, exp
4

, exp
44

x
T x t A B

at

A x
T x t

att

A x x
T x t

t atat

 
   

  
  

  
  

 
  
 

       (34) 

 

 Cylindrical solutions. Solving (33) with n=1 yields T()=A+BEi(2), where Ei(x) is the 

exponential integral, but now only its partial derivatives in t will be solutions too; in particular: 

 

 

 

 

2

2

, Ei
4

, exp
4

r
T r t A B

at

A r
T r t

t at

 
   

 


  
   

  

       (35) 

 

 Spherical solutions. Solving (33) with n=2 yields   2( ) erf ( ) expT A B        , but 

again only its partial derivatives in t will be solutions too; in particular: 

 

 

 

 

2

2

, erf exp
4 44

, exp
4

r r r
T r t A B

at atat

A r
T r t

atr t


     

        
      


  

   
  

       (36) 

Energy deposition in unbounded media 

A most basic application of similarity solutions is the temperature field due to a thermal pulse in an 

unbounded medium, i.e. the instantaneous release of an amount of energy Q at the origin; in mathematical 

terms, this can be formulated in two different ways, here shown for the planar case: 

 As a singular initial-value problem in temperature without sources: 

 

 
2

2

At  0 ( , ) δ( , )

( , ) 1 ( , )
For  0 0

Q
t T x t T x t

c

T x t T x t
t

x a t





   




    
  

       (37) 

 

 As a singular-source regular problem in temperature: 

 

 

2

2

( , ) ( , ) 1 ( , )
For  ( , ) 0

with ( , ) δ( , )

T x t x t T x t
x t

x k a t

x t Q x t





 
    

  
 

       (38) 

 

The solution can be expressed in a compact form valid for multiple geometries: 
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   
 

2

1 1

2 2

exp
4

( , ) , (0, ) ,

4 4
n n V

r
Q

at Q Q
T r t T T t T T T dV

c
c at c at


   

   

 
 
             (39) 

 

where the last integral extends to the whole space in the variable considered (one-dimensional, two-

dimensional, or three-dimensional volume), according to the n-value: 

o n=0 for the planar geometry, where r should be understood as the x-coordinate, and Q is the 

energy released at x=0 and t=0 per unit area. 

o n=1 for the cylindrical geometry, where Q is the energy released per unit length, and the  

o n=2 for the spherical geometry, where Q is the total energy released initially at the centre. 

 

An example of the temperature profiles obtained is presented in Fig. 3 for the configuration detailed in the 

exercise following. T∞ is the initial temperature of the solid (and the value at x∞ for any time, or at 

t∞ for any x). Notice that at a given distance x, temperature attains a maximum value in time (T/t=0) 

after a lapse  2 2t x a   from the pulse; i.e. the initial pulse (at x=0) travels at a speed dx/dt=  2a t , 

decreasing in amplitude with time too. A time t after the pulse, the maximum is at 2x at  and values 

 max 4T Q c eat  . It happens that, at a given time, this Tmax (taking place at 2x at ) is simply 

related to the temperature at x=0 by Tmax=T(0,t)/e1/2=0.61·T(0,t) (mind that T(x,t) always decreases with x, 

but has a maximum with t).  

 

 
Fig. 3. a) Temperature evolution at three points in a semi-infinite slab with a heat pulse at x=0. b) Spatial 

temperature profiles at three instants in time. (Exercise 6.) 

 

Exercise 6. For an analysis of the temperature field in a brake pad of thickness L=0.02 m (the other 

dimensions being much larger), when suddenly rubbed on one face, consider an instantaneous 

deposition of Q=10 MJ/m2 on one side of a slab of conductivity k=1 W/(m·K), density =2000 

kg/m3, thermal capacity c=1000 J/(kg·K), and no heat losses to the ambient, and find the 

temperature history in the middle of the slab. Formulate the problem as an unbounded medium, 

and quantify the constraints imposed by this simplification. 

Solution. The general solution for unbounded media has been given in (39), here to be applied to the 

planar case, n=0; i.e., at a point x1, T(t) becomes: 
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22
7 1

6

6

10 expexp
4 0.5 104

( , )
4 2000 1000 4 0.5 10

xx
Q

tat
T x t T

c at t  






   
  

       
   

       (40) 

 

where a=k/(c)=1/(2000·1000)=0.5·10-6 m2/s. In Fig. 3a above, the temperature evolution is 

plotted for the desired point x1=L/2=0.01 m, and for two other locations, at half and double 

distance to the heated surface; notice that the last location, x=0.02 m, is precisely the end of the 

slab, which was to be adiabatic, and is incompatible with the approximation of semi-infinite-thick 

slab (this helps to quantify the validity of the unbounded solution; in our case, Fig. 3 shows that it 

takes about 50 s for the back of the pad to notice the heating (at that time the rubbed surface has 

cooled to T(0)<300 K above the initial temperature T∞). Notice that the temperature evolution at 

x=0, T(0,t), is not valid for very short times (in practice, the rubbing will take some time, say a few 

seconds). The temperature evolution at the middle point deduced with the unbounded model may 

be valid for the first few minutes. 

 

The instantaneous deposition of energy studied above, can be extended to several other problems where 

the deposition is not instantaneous and at a point, but extended in time or space, by time integration or 

space integration of infinitesimal instantaneous depositions at different times or places, respectively, with 

the results compiled in Table 5, where the original case (35) has been also included. Some of these 

solutions are the most used and accurate methods to measure thermal properties of materials, either in 

continuous heat release mode (e.g. heating needle), or as a heat pulse (e.g. using two small nearby 

thermistors, say 0.5 mm in diameter separated r=5 mm, the time it takes for a heat pulse, say of 0.1 W 

during 1 s, in one resistor to reach the other one is, from  (39), t=r2/(6a), with a Tmax=(e)-

3/2Q/(8kt3/2)=0.005·Q/(kt3/2), which allows determining a, k, and c=k/(a)). 

 

Table 5. Some analytical solutions for the unsteady heat equation in unbounded media (31); a=k/(c). 

Problem Solution Notes 

1. Instantaneous point-

source deposition, one-, 

two-, tri- dimensional with 

 
V

Q
T T dV

c
   

 

 

 

2

1

2

exp
4

( , )

4
n

r
Q

at
T r t T

c at 
 

 
 
    

 
1

2

(0, )

4
n

Q
T t T

c at 
 

   

Planar case: n=0 and Q [J/m2].  

 

Cylindr. case: n=1 and Q [J/m]. 

 

Spherical case: n=2 and Q [J].  

t=0, Delta(x). 

 

t>0, Gauss bell. 

2. Continuous point-source 

deposition, one-, two-, tri- 

dimensional with 

 
V

Qt
T T dV

c
   

Planar: 

 
 

2exp( , )
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2

T x t T

Q
x

k


 






    

Q =Heavisade(t) at x=0 

Planar Q  [W/m2], with 

4

x

at
   

Axial Q  [W/m], with 
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Axial (r>0):  2( , )
Ei

4

T r t T

Q

ca






    

Notice that Ei(2) is singular at =0, 

but, for <<1 ( 4r at ),  Ei(2) 

ln(2), with =0.577, and 

ln(2)/t=t, independent of r 

Point source:  
( , )

erfc

4

T r t T

Q
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




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4

r
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2 44 r at

T
Q k

t
 





 

 

Point Q  [W], with 

4

r

at
   

3. Instantaneous finite line-

source, one-dimensional 

deposition of initial width L 

 

( , ) 2 2erf erf
4 4

2
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x x
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Q at at
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
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erf

4
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cL

  
  

 

 

t>0.  

Tends to a point-source (Gauss 

bell) for t  

4. Continuous planar-source 

deposition moving at speed 

V and lasting from t=0 (at 

x=0) to t1. 

 
 

0moving
 axes

0

1
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2

x

t

x
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a
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2 2axes(0, )

1 exp erfc

2

T t T V t V t

Q a a

cV


  

         

 

Q  [W/m2]. 

T(x,t) has not a simple form, 

but T(x,t→) in moving axes 

has a plot like this: 

 
T(0,t) (i.e. where deposition 

starts) is in fixed axes. 

5. Continuous line-source 

deposition moving at speed 

V. Steady state. 

 

0

( , )
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2 2

2

T x y T Vx Vr
K

Q a a

k

    
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1

4

2

x yT x y T a Vy

Q Vx ax

k






 

  
 

 

Q  [W/m]. 

K0 is the modified Bessel 

function of the second kind. 
2 2r x y   

6. Continuous point-source 

deposition moving at speed 

V. Steady state. 

 

 ( , , )
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2

4

V r xT x y z T

Q a

kr


  

  
 

 

 2 2 2 2

( , , )
exp

4

4

x y z V y zT x y z T

Q ax

kx

 


  
 
 
 

 

Q  [W]. 

2 2 2r x y z    

7. Infinite rod moving at 

speed V in (V<0) or out 

(V>0) of a furnace. 

 

2
0

0

( ) 2
exp 1 1

2

x
f

f

T x T Vx am

T T a V

          
    

  

 

The furnace is at x<0 and Tf. 

T0 is the rod temperature at the 

mouth. 

The outside fluid is at x>0 and 

T. 

The convective coefficient h is 

the same inside and outside.. 
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2
0

0

( ) 2
exp 1 1

2

xT x T Vx am

T T a V






          
    

  

 

0
2 2 22 2 4

f fT T T T V
T

V a m

  
 


 

hp
m

kA
 , with p and A being 

the perimeter and area of the 

rod cross-section. 

8. Continuous spherical-

source kept at fixed-T. 

 

 

 

( , )
erfc

4R

T r t T R r R

T T r at





  
  

  
 

 

Only valid for r>R.  

The heat supplied to the sphere 

must be controlled to match 

 2 1 1
( ) 4 RQ t k R T T

R at





 
   

 
 

 

Thermal contact in semi-infinite media 

Another important kind of thermal problems where similarity in the variables make them amenable to 

analytical solution is a sudden change in the boundary condition of semi-infinite bodies, which can be 

applied to practical geometries of finite thickness L for short-enough times, because for t<<L2/a (Fo<<1) 

the solid can be supposed semi-infinite. 

 

For instance, for the sudden thermal change in a the face of a planar semi-infinite body (as developed in 

Exercise 8 in the Introduction), the transient temperature profiles are given by (34). The following 

example (Fig. 4) illustrates an imposed-convection case.  

 

 
 

Fig. 4. Temperature profiles at several time intervals in a solid material initially at 15 ºC, suddenly 

exposed to air at 15 ºC with constant convective coefficient. 

 

Exercise 7. Find for how long air-freezing temperatures of 10 ºC can be tolerated, without freezing 

penetration to 1 m depth in soil, assuming and initial T-field at 15 ºC, a sudden change in air 

temperature from 15 ºC to 10 ºC (with no further variation), a convective coefficient of h=10 

W/(m2·K), and the soil having =2000 kg/m3, c=2000 J/(kg·K), k=0.5 W/(m·K), and without 

freezing effects. 

Solution. Applying the initial and boundary conditions for the soil, to the general solution (34), one gets: 
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  1 2 00
0

erf ( ), with  & ( ,0)
x

x

T
T c c k h T T T x T

x





 



        

  
2

0 0 2
( , ) erfc exp erfc

2 2

x hx h at x h at
T x t T T T

k k kat at


    
            

      

  (41) 

 

and the desired time-period is obtained by solving (41) for T(x,t)=0 ºC (water freezing) at x=1 m, 

with T0=15 ºC and T=15 ºC, an implicit equation that yields t=9.7·106 s (i.e. some 110 days). 

Figure 4 shows the temperature profile at several times. 

 

Another important application of similarity solutions is the evaluation of the contact temperature when 

two solids at different temperature get into contact.  

 

Let solid A extend from x=0 to +∞, initially at TA, and solid B extend from x=0 to ∞, initially at TB, and 

let T0 be the contact temperature (at x=0). Applying the initial and boundary conditions to the general 

solution (34) for solid A: 

   1 2 0 0 0erf ( ), with  ( ,0) & (0, ) ( , ) erf ( )
2

A A A

A

x
T c c T x T T t T T x t T T T

a t
       

 0

0

with   
A AA

A A

x A

k T TT
q k

x a t



 


     (42) 

 

whereas for solid B: 

 

 1 2 0 0 0erf ( ), with  ( ,0) & (0, ) ( , ) erf ( )
2

B B B

B

x
T c c T x T T t T T x t T T T

a t



       

 0

0

with   
B BB

B B

x B

k T TT
q k

x a t



 


    (43) 

 

Now, the energy balance at the interface (continuity of heat flux) implies: 

  

 
   0 0

00
A A B B A A A A B B B B

A B A A A B B B

k T T k T T T k c T k c
T

a t a t k c k c

 

   

  
   


 (44) 

 

where the parameter k c  is called thermal effusivity, e (or thermal inertia, i), with units of J/(m2·K·s1/2) 

or kg/(K·s5/2). The following exercise presents a simple application. 

 

Exercise 8. Find the contact temperature between a bare foot and a floor at 10 ºC, for the case of wooden 

floor and for the case of ceramic floor. 

Solution. For our flesh we estimate its thermal data by approximation to those of leather in Solid thermal 

data: k=0.4 W/(m·K), =1000 kg/m3, c=1500 J/(kg·K), what yields 
-1 5/ 20.4 1000 1500 770 kg Kk c s       . For wood, a look-up in the same table (for oak 

wood) gives: 
-1 5/ 20.17 750 2400 550 kg Kk c s       , and for ceramic tiles (with marble 

data): 
-1 5/ 22.6 2700 880 2500 kg Kk c s       , so that, if we assume our body at 37 ºC (feet 

http://imartinez.etsiae.upm.es/~isidoro/dat1/eSol.htm
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are always a few degrees colder) and the floor at 10 ºC, the skin in contact with wood will face 

(nearly instantaneously) a temperature of (8): (37·770+10·550)/(770+550)=22 ºC, whereas in 

contact with ceramic tiles will have (37·770+10·2500)/(770+2500)=16.4 ºC, what makes a great 

difference (we may feel variations in our skin temperature of a few tenths of a degree!). 

 

A compilation of similarity solutions for semi-infinite bodies is presented in Table 6. 

 

Table 6. Some self-similar analytical solutions for the unsteady heat equation in semi-infinite bodies (31). 

Problem Solution Notes 

1. Step jump in surface 

temperature 
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( , )
erfc

2

T x t T x

T T at





  
  
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Planar geometry. 

t<0: T(x)=T∞, 

t>0: T(0)=T0, 

  00,
T T

Q t kA
at
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2. Step jump in surface 

heat flux 
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Planar geometry. 

t<0: T(x)=T∞, 

t>0: 0

0

d

d x

Q T
k

A x 

  

3. Step jump in surface 

convection 
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Planar geometry. 

t<0: T(x)=T∞, 

t>0: 

 0 0
0

d

d x
x

T h
T T

x k 


   

  

4. Sudden thermal 

contact 
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x
T x c c
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    

 
 

 

  3 40 erf
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x
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 
 

 

0
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A A A B B B

T k c T k c
T

k c k c

 

 





 

Planar geometry. 

t<0: T(x)|x>0=TA and   

T(x)|x<0=TB. 

t>0: T0f(t). 

If equal properties: 

T0=(TA+TB)/2   

Freezing and thawing 

Temperature variation due to heat transfer, may give way to a phase change, either in a pure-component 

medium (e.g. condensation of steam), or in a multi-component medium (e.g. condensation of water-

vapour from humid air). In any case, when a phase change occurs, the associated enthalpy change must be 

accounted for, what, in addition to the density change involved, renders the problem difficult to model 

and solve. Conduction with phase change basically reduces to the classical Stefan problem, named after 
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Jožef Stefan, the Slovene physicist who introduced the general class of such problems around 1890, in 

relation to problems of ice formation.  

 

Although an exact analytical formulation for this conduction moving-boundary problem exists, the 

simpler following approximation is good enough in practice. Consider the one-dimensional freezing of a 

liquid of freezing temperature Tf, freezing enthalpy hSL, density , and thermal conductivity k, when 

exposed to a freezing medium (e.g. cold air) at a temperature T below its freezing point and with a 

convection coefficient h. After some time t, the freezing front will have progressed a distance X(t), and a 

linear temperature profile may be assumed within the grown solid, from an unknown temperature T0(t) at 

x=0, to the freezing front Tf at x=X. If the liquid is initially at Tf, then the energy balance per unit area at 

the freezing interface gives the growing rate:  

 

   
 2

ff 0 f
0

2d
1 1

1d
SL

SL

h T TT T T TX k
h k h T T X t t

Xt X h h k

k h







  
        
 

  

      (45) 

 

The time t it takes to get a given frozen depth, X, is then:   

 

 f

1

2

SLh X
t X

T T h k





 
   

  
       (46) 

 

which can be generalised for other geometries by using the equivalent penetration depth defined as the 

quotient between volume and surface area, X=V/A; i.e. for a slab of thickness L, one must set X=L/2 in 

(46); for a cylinder of diameter D, X=D/4; and for a sphere, X=D/6.  

 

The result (46) can also be applied to the freezing of a liquid flowing along a pipe at low Reynolds 

number (say at RePr<10). For instance, if a sizeable stretch of a capillary tube of internal radius R=1 mm, 

through which water is flowing at 1 mm/s, is suddenly brought to a wall temperature 1 ºC below freezing 

point, the time it will take for the flow to stop (when the growing ice reached the centre) is 

t=hSLX2/(2kST)=hSLR2/(8kST)=1000·334·103·(10-3)2/(8·2.3·1)=18 s. At these low flow regimes, the 

ice/water interface is almost cylindrical (except near the entrance to the freezing segment), with the radius 

decreasing in time as ice 1r R t t   . For higher convection regimes, the closure time depends on flow 

speed, and the liquid nay even go through the freezing stretch without becoming totally frozen. 

Reduction by separation of variables 

There are problems described by partial differential equations whose initial and boundary conditions only 

depend on the variables alone and not on their combination. In those cases, looking for a solution in terms 

of functions of separate variables may transform the partial differential equation into a set of ordinary 

differential equations, one in each dimension, a technique developed by Fourier. Table 7 gives a 

compilation of analytical solutions to heat transfer problems in terms of separate variables. 
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Related to separation-of-variables method, some other approaches have been developed for the analytical 

and numerical solution of PDE problems, aiming at the reduction of one differentiation variable, the time 

variable in modal analysis (spectral methods), or one of the space variables in the integral-transform 

technique. For instance, for problems with restrictions varying with time, numerical methods become 

costly because one must always start at time t=0 and use a small t for accuracy and stability. It is better 

to approximate the solution function in terms of eigenfunctions, obtained by solving the unloaded system 

(KI)Ti=0, where i are the eigenvalues and f i i 1
2   the eigenfrequencies. 

Unsteady problems in 1-D 

Some analytical solutions to unsteady problems have been developed above in terms of a similarity 

variable. Those apply basically to unbounded or semi-infinite media. When finite lengths (or finite times, 

as in periodic boundary conditions) appear in the problem, separation of variables can be tried, although, 

contrary to similarity solutions, separation of variables usually require an infinite series of terms to match 

the boundary conditions imposed, what reduces its practical interest. 

  

Consider, for instance, thermal relaxation in a slab of thickness L and initial temperature T(x,0) when its 

surface temperature (on both sides) is maintained at a constant value T0; the particular case with T(0,t)=T1 

serves to model the sudden immersion of a uniform-temperature solid into a stirred bath. The heat 

equation for this problem, assuming the solution T(x,t) can be cast in separate-variable functions, and 

after division by T(x,t), becomes: 

 

   

 

 
1 2

22
1 2

2 2
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, ( ) ( )1 1
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 

 


            (47) 

 

showing that each term must be a constant (cannot depend on the other variable). The two kinds of 

functions that have a second derivative proportional to the function values are the exponential and 

trigonometric functions. We know that time-variation must be an exponentially-decaying function in all 

transient problems towards a stationary state, so that, because of the sign in (47), trigonometric functions 

must be chosen for the spatial dependence, whose actual form is dictated by the type of boundary 

conditions: if, as in our case, a constant value of the function must be maintained at the surface, the 

simplest choice is of the type X(x)=cnsin(nx/L) (maybe with an additional constant), which cancels at 

both x=0 and x=L, or equivalently X(x)=cncos((n+1/2))x/L). In other cases, a zero temperature-gradient 

is imposed (adiabatic end), and thence the best choice is X(x)=cncos(nx/L), or equivalently 

X(x)=cnsin((n+1/2))x/L). In our case, and with T≡T(x,t)T1, the solution is: 
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Notice that the two boundary conditions T(0,t)=T(L,t)=0 are automatically fulfilled by our choice of 

spatial base functions, whereas matching the generic initial boundary condition demands a Fourier-series 

expansion; the series coefficients are computed by minimisation of the function-projection over each of 

the base functions: 

 

 
0

2
,0 sin , 1,2,3...

L

n

n x
c T x dx n

L L

 
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 
        (49) 

 

For instance, for a uniform initial temperature T0, T(x,0)=T0T1, (49) yields cn=(1(1)n)2(T0T1)/(n), 

and the evolution is as sketched in Fig. 5 using a truncated series, n=1..N. 

 

 
Fig. 5. Thermal relaxation in a slab of uniform initial temperature T0, when suddenly brought to T1 at the 

ends: a) temperature profiles at several times, b) mid-point temperature evolution, and c) degree of 

matching the initial conditions for a truncated series with N=10 and N=100; notice that both 

approximations are nearly indistinguishable in a) and b). 

 

The case of a planar geometry with one end suddenly brought to a higher temperature while the other is 

adiabatic, is presented in Fig. 6 and solved next. 

 
Fig. 6. Adiabatic wall with a temperature jump at one face. a) Rear temperature evolution approximated 

by just the first term in (52) (N=0, which gives T=53.5 ºC after 10 s, but is inappropriate below 
some 2 s), and a good-enough fit (N=10, which gives T=53.6 ºC after 10 s); b) temperature 
profiles along the plate using (51) truncated to N=10 (notice that this approximation is 
inappropriate for times below 0.1 s). 

 

Exercise 9. A 20 mm thick iron plate, initially at room temperature T0=15 ºC, is suddenly brought to 

T1=100 ºC on one face (e.g. by a jet of boiling water) while the other one can be considered 

isolated. Find the temperature at the rear 10 seconds after the change. 

Solution. We try a solution to the heat equation in separate variables of the form: 
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 (50) 

 

From the last condition (adiabatic rear: ancos(anL)=0) one concludes that anL=/2+n, and with 

(47), bn=(n+1/2)22at/L2; thence: 
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The rear temperature, plotted in Fig. 6 (as well as several spatial profiles), is then approximated by 

the truncated series (as seen in Fig. 6, the first term is already good enough for not too-short 

times): 
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       (52) 

 

and finally T=100+(15100)·0.547=53.5 ºC 

 

There are many other standard separate-variable-solutions to one-dimensional unsteady problems, like 

those of non-trivial initial thermal fields, periodic boundary conditions, cylindrical or spherical 

geometries, etc., some of them compiled in Table 7. The case for the sudden immersion of slabs, 

cylinders, or spheres, in a fluid is of so much practical interest that graphical presentations are commonly 

used (following the first plots by M.P.Heisler-1947); these so-called Heisler's diagrams, present the non-

dimensional temperature and non-dimensional heat-flux in terms of the only two non-dimensional 

parameters involved: the non-dimensional time given by the Fourier number, Fo≡at/R2, and the non-

dimensional heat-convection coefficient expressed by the Biot number, Bi≡hR/k. Nowadays, with the 

availability of computers, the usefulness of these kind of graphical presentations has declined. 

 

The case of a spherical geometry is presented in Fig. 7 and solved next. 
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Fig. 7. Temperature and heat-flow evolution in a sphere at 0 ºC suddenly exposed to 100 ºC. 

 

 

Exercise 10. Find the central temperature evolution in a stainless-steel ball 5 cm in diameter, when taken 

out of an ice-water bath and submerged into boiling water. 

Solution. Instead of just using the solution given in Table 8, we develop here the result from the basic 

heat equation (and with two different boundary conditions): 
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showing that each term must be a constant (cannot depend on the other variable). We know that 

time-variation must be an exponentially-decaying function in all transient problems towards a 

stationary state, so that the mentioned constant must be negative, say b2. The solution to the left-

hand-side, dF2(t)/dt=b2a, is then F2(t)=c1exp(b2at), whereas the solution to the right-hand-side, 

with the change G(r)=F1(r)/r, becomes, d2G(r)/d2r=b2, and thus has as solutions F1(r)= 

c2sin(br)/r+c2sin(br)/r, although only the sin-term is appropriate here since F1(r)|r=0 must be finite. 

The general solution to (53) is then: 
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where the constants cn and bn are obtained by imposing initial and boundary conditions. 

 

If we model the convective boiling process by the limit h→, then the initial and boundary 

conditions are: 
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From (57) we deduce that bnR=n; (56) is automatically verified, and from (55), with the value for 

bn, we get cn=2(1)n(T1T0)/(n), finally yielding: 
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with the results presented in Fig. 7 for N=10 and the data for this exercise: T0=0 ºC for the ice bath, 

T1=100 ºC for the boiling bath, R=0.025 m, and a=k/(c)=18/(7800·500)=4.6·10-6 m2/s for 

stainless-steel. We may check the order of magnitude of the relaxation time, 

t=L2/a=(0.05/6)2/4.6·10-6=15 s (to be compared with the real relaxation time of some 30 s 

estimated from Fig. 7), where the characteristic length of a spherical object, 

L=V/A=(D3/6)/(D2)=D/6, has been used. 

 

If we model the convective boiling process by a finite-value convective coefficient, h, then the 

initial and boundary conditions to be imposed on (54) are: 
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Developing (57) we get: 
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and we cannot proceed any further analytically since the values for bn must be obtained by 

numerically solving (62). Once this is done, values for cn are obtained by cancelling the projection 

of (59) over each of its base-functions, with the final result shown in Fig. 8. Now, both the 

temperature at the centre and the temperature at the surface are shown versus time; notice that this 

relaxation process is slower than the former: e.g. after 30 s, the centre-temperature is now 61 ºC, the 

heat flow is 240 W, and 82% of the energy transfer has occurred, whereas in the constant-surface-

temperature model, after 30 s, the centre-temperature is 78 ºC and the energy received 93% of the 

total. 



Heat conduction page 26 

 
Fig. 8. Temperature and heat-flow evolution in a sphere brought from 0 ºC to 100 ºC, (58). 

 

Periodic solutions in 1-D 

For problems with periodic boundary conditions, a more involved separation of variables must be applied, 

and only suitable when the periodic response has been achieved, after the initial transients following the 

periodic excitation. For a semi-infinite solid with periodic boundary conditions, the physical variables 

(x,t) are changed to the new variables (x/xc,2t/x/xc), corresponding to a time-shift proportional to 

penetration distance, and dependent on the applied period  and a characteristic length xc (to be found 

from the heat equation), as shown in the following Exercise. 

 

Exercise 11. Find the penetration of the thermal wave when a sinusoidal temperature-variation is forced 

in the surface of a semi-infinite solid. 

Solution. We try a solution to the heat equation that is periodic in time, with the applied period , and 

decays exponentially with a characteristic penetration length xc to be found: 
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i.e., the T-oscillation amplitude imposed on the surface, decays with penetration, being a fraction 

exp(1)=0.37 at x=xc, a fraction exp(2)=0.13 at x=2xc, a fraction exp(3)=0.05 at x=3xc, and so 

on, with the result that for x>>xc the oscillations are unnoticeable, and such a finite-thickness wall 

can be considered semi-infinite in this respect. But the most interesting result is the time-lag 

between the maximum T at x=xc relative to the maximum T at x=0; as said, Txc/T0=0.37, and 

it occurs after a time-lag of /(2), i.e. around a sixth of the period later; for instance, if the model 

is applied to the annual temperature oscillations in temperate climates, =1 yr and the maximum 

temperature at a depth of x=xc=(a/)1/2=(10-6·31.5·106/)1/2=3 m is retarded /(2)=2 months 

relative to the maximum at the surface (say, the summer solstice), where a typical thermal 

diffusivity for the land a=10-6 m2/s, and the approximation of imposed variation of surface 

temperature, have been assumed. Similarly, the diurnal temperature change at a depth of 

xc=(a/)1/2=(10-6·86400/)1/2=0.17 m below ground is dumped to 37% of the surface amplitude, 
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and delayed about /(2)=4 h relative to the maximum at the surface (midday). These results can 

be applied to the finding of a minimum depth to bury water pipes to avoid freezing in cold 

weather; e.g. in a given location with diurnal extreme temperatures of 6 ºC and +14 ºC, i.e. 

T=(410) ºC, placing the pipes xc=0.17 m below the surface already shortens the oscillations to 

T=(410·exp(1)) ºC=(43.7) ºC, thus avoiding freezing.  

The thermal penetration depth is very small for metals exposed to rapid temperature oscillations, 

as for piston-cylinder walls in reciprocating engines; e.g. for a two-stroke 6000 rpm operation, 

=0.01 s, and with a metal thermal diffusivity of a=10-4 m2/s, the semi-infinite heat-transfer model 

can be applied to wall thicknesses larger than x=xc=(a/)1/2=(10-4·10-2/)1/2=0.6 mm. 

 

The heat flux corresponding to solution (63), q k T   , also shows a periodic oscillation in time and a 

decreasing amplitude with depth. In particular, the heat flow at the surface is: 
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Example 2. Temperature oscillations in an engine wall 

 

Related to this planar oscillatory solution is the spherical solution, i.e. where a point heat source at the 

origin (r=0) has a periodic amplitude,  0 0m sin 2Q Q t  . The temperature field (singular at r=0) is: 
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Steady problems in 2-D 

The separation-of-variables technique can be applied to higher order multi-dimensional problems (as 

before, initial and boundary conditions must be also stated in separated variables).  

 

In the general case of unsteady problems, the solution can be built by combination of the one-dimensional 

problems involved. For instance, the temperature field in a finite cylinder of length L and radius R, 

initially at T0, when subjected to lateral convection with coefficient h1 and fluid temperature T1, to some 

other constant convective coefficient h2 at the upper base, with the far fluid at temperature T2, is 

T(r,z,t)=Tcyl(r,t)Tslab(x,t), where Tcyl(r,t) is the solution given in Table 7 (case 11) for the infinite cylinder 

exposed to lateral convection, and Tslab(x,t) is the solution given in Table 7 (case 5) for the slab with a 

convective condition at x=L and an adiabatic condition at x=0. In summary: 

 

       , , , , , ,caseA caseB caseCT x y z t T x t T y t T z t        (66) 

 

It can be demonstrated that the heat transfer can also be computed by composition of the one-dimensional 

cases, in the way (Langston-1982): 

 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c11/Exercise2
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For steady problems, the unsteady solutions constructed as said before can be applied in the limit t→, or 

new solutions in separate variables built from scratch. For instance, if we consider a two-dimensional slab 

of widths Lx and Ly, initially at T0, with one of its sides, say y=Ly, brought to T1 (the other three sides are 

kept at T1), the formulation is as follows: 
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where the trigonometric functions have been selected in X(x) because of the periodicity in the x-boundary-

conditions, whereas the hyperbolic functions are chosen for Y(y) because of the exponential adaptation 

from T0 to T1. 

 

As a final remark, all these analytical solutions in series-expansions should be considered mainly as 

interesting academic solutions, but of very limited practical use, because a simple finite-difference 

numerical simulation resolves all these regular-boundary problems with a single code and similar 

programming burden, and practical non-rectangular geometries have to be solved numerically anyway. 

 

Table 7. Some analytical solutions for the heat equation in terms of separate variables (T≡T(x,t)Tini). 

Problem Solution 

1. Slab. T-jump on both 

sides.  

 

0<x<L, T(x,0)=T0, T(x,)=T1: 
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2. Slab. T-jump on both 

sides 

 (centred). 
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or else 
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3. Slab. T-jump on one 

side. 

 

0<x<L, T(x,0)=T0, T(x,)=T1(T1T0)x/L: 
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4. Slab. Q -jump on one 

side, and T=T0 at x=L. 

 

0<x<L, T(x,0)=T0, T(x,)=T1(T1T0)x/L: 
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5. Slab. Immersion in a 

fluid with constant-h. 

 

L<x<L, T(x,0)=T0, T(x,)=T1: 
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6. Two slabs contacting 

 with adiabatic ends. 

 

 

 

7. Rod. T-jump on one 

side, and Q=0 at x=L. 

 

0<x<L, T(x,0)=T0, T(x,)=T0(Q0)cosh((m(Lx))/cosh(mL): 
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8. Rod. Q -jump on one 

side, and Q=0 at x=L. 

 

0<x<L, T(x,0)=T0,  0 0( , ) ( /( ))cosh / sinh( )T x T Q mkA m L x mL      : 
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9. Rod. T-jump on both 

sides. 

 

0<x<L, T(x,0)=T0, T(x,)=T0(T1T0)sinh((m(Lx))/sinh(mL)+ 

(T2T0)sinh((mx)/sinh(mL): 
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10. Cylinder. T-jump at 

the surface. 

 

0<r<R, T(r,0)=T1, T(x,)=T0: 
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cn being the n-root of  0 0nJ c R   

11. Cylinder. Immersion 

in a fluid with constant-h. 

 

0<r<R, T(r,0)=T1, T(r,)=T0: 
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12. Sphere. T-jump at the 

surface. 

 

0<r<R, T(r,0)=T1, T(r,)=T0: 
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13. Sphere. Immersion in 

a fluid with constant-h. 

0<r<R, T(r,0)=T1, T(x,)=T0: 
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14. Semi-infinite body 

with periodic surface 

temperature. 

 

x>0, T(x,0)=T0,mean, T(0,t)=T0,mean+T0sin(2t/)),  being the imposed period. 
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15. Semi-infinite body 

with periodic surface 

convection. 

 

x>0, T(x,0)=T1,mean, T(,t)=T1,mean+T1sin(2t/))
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16. Bi-dimensional steady 

state after a temperature-

jump from T0 to T1 in part 

of its surface. 

 

T-jump only at the upper side (as in the sketch): 
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T-jump at the upper and right side (not in the sketch): 
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Other analytical methods to solve partial differential equations 

There are other well-known analytical methods used to solve partial differential equations, but their 

application in heat transfer is marginal. Among them we have: 

 

 Green function integrals. For a given field (like the electrostatic field), Green's function gives the 

potential at the point x due to a point charge at the point x' the source point, and only depends on the 
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distance between the source and field points. For instance, for the two dimensional Laplace 

operator, Green's function is G(x,x')=-lnr/(2), with r being the distance such that r2=(xx')2+(yy')2, 

and a general solution to Txx+Tyy(x,y)=0 is T(x,y)= ∫∫G(x,x',y,y')(x',y')dx'dy'. Green's functions 

play an important role in the solution of linear ordinary and partial differential equations, and are a 

key component to the development of boundary integral equation methods. 

 Laplace transform. Laplace transform is a kind of Fourier integral that converts differential 

equations in time into algebraic equations, what renders it worth to convert time-dependant heat 

transfer problems to time-independent problems (but the reverse, finding the Laplace inverse 

function is not an easy task). 

 

A final comment on analytical solutions is appropriate here. Although the superposition principle for 

linear differential equations allows for problems with complex boundary or initial conditions to be solved 

by series expansion or Green's function integrals, they would require numerical evaluation for the sums or 

integrals, and straight numerical methods are preferred 

Duhamel`s theorem 

Duhamel`s theorem demonstrates that the solution to a (linear) heat conduction problem with time-

dependent boundary conditions or/and time-dependent heat-sources,  

 

2 ( , ) 1 ( , ) ( , )
( , ) 0, ( , ) ( )

i

x t T x t T x t
T x t k hT x t f t

k a t x

  

 
        (69) 

 

can be computed from the solution to a the time-independent problem: 
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    
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where t is now a parameter (not time), with the relation: 

 

0

( , ) ( , , )

t

T x t x t d
t





   





 
   (71) 

NUMERICAL SOLUTIONS 

Numerical solutions are the rule in solving practical heat transfer problems, as well as in mass and 

momentum transfer, because the analytical formulation in terms of partial differential equations is not 

analytically solvable except for very simple configurations, as seen above. Numerical methods transform 

the continuous problem to a discrete problem, thus, instead of yielding a continuous solution valid at 

every point in the system and every instant in time, and every value of the parameters, numerical methods 

only yield discrete solutions, valid only at discrete points in the system, at discrete time intervals, and for 

discrete values of the parameters. However gloom the numerical approach may sound, it has two crucial 

advantages: 

 Can provide a solution to any practical problem, however complicated it may be (not just steady 

one-dimensional, constant-property ideal models). In any case, it is most important to realise that 



Heat conduction page 33 

any practical problem is at the end an intermediate idealisation aiming at practical answers (e.g. 

nobody takes account of the infinite figures in ; 3 may be a good-enough approximation, and 

3.1416 already an accuracy illusion). 

 The discretization can be refined as much as wanted (of course, at the expense in computing time 

and memory, and operator's burden). In any case, it is wise to start with as few unknowns as 

feasible, for an efficient feedback (most of the first trials suffer from infancy problems that are 

independent on the finesse of the discretisation). Any good practitioner knows that refinements 

should follow coarse work, and not the contrary.  

 

All numerical approaches transform the continuous problem, that we may write as PDE(T)=F meaning 

that a partial differential operator applied to the temperature field should equal the force-field imposing 

the thermal non-equilibrium, to a discrete problem that we may write, at a given instant in time, as 

K*T=F, where, instead of one differential equation, we have for each time step a set of N algebraic 

equations involving the unknown temperatures at N points in the system (to our choice), a set of known 

applied stimuli at N points (to be computed in a particular way), and a set of N*N coefficients to be 

computed also in a particular way, depending on the numerical method. Numerical methods differ in the 

way they yield this system of algebraic equations, but a general baseline exists. The problem may be 

generally stated as: 

 

        0 0, 0, , 0, , 0PDE T x t BC T x t IC T x t    (72) 

 

where PDE, BC and IC represent functionals related to the partial differential equation, boundary 

conditions and initial conditions, respectively. Numerical methods approximate the infinite-degrees-of-

freedom continuous solution by a finite N-degrees-of-freedom solution of the form: 

 

   
1

, , ( ) ( )
N

approx IBC

i i

i

T x t T x t T t x


   (73) 

 

where  ,IBCT x t  is a known function (chosen by the modeller) satisfying all the initial and boundary 

conditions, ( )iT t  are unknown coefficients (varying with time for transient problems) to be numerically 

found, and  i x( )


 are known trial functions, the base functions the modeller chooses as a function space 

of the solution. Notice the separation of variables in time and space in (73); in practice, the time-

dependence is also discretized, but this is a simpler problem because time is is one-dimensional and 

unidirectional, and we forget it for the moment. Notice also that, in spite of the fact that physical 

uncertainty comes from different idealisations (geometrical, material, temporal, interactions...), it is 

customary to look for solutions that approximate the PDE but exactly verifying the initial and boundary 

conditions. 

 

Several numerical methods have been developed, each with its own advantages and complexities, from 

simple ones like the lumped method or the finite difference method, which can be developed from scratch 

for every new problem (but becoming too cumbersome in complex cases), to the standard finite element 
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method that, once developed (it demands much more effort), can be routinely applied to whatever 

complex case we have at hand.  

 

Steady state problems in heat transfer are boundary-value problems (elliptic problems), more difficult to 

solve numerically than initial-value problems (parabolic problems), thus, even for steady state problems, 

it is advisable to solve the initial value transient until sufficiently-small changes indicate the steady state 

is reached. 

 

The most common numerical methods, from simpler to more complex, may be grouped as: 

 Integral methods, where the integral energy equation d dE t Q W   is solved, instead of the 

(differential) heat equation (3). Among them, the most used are: 

o Global fitting, where and ad-hoc continuous T-field function is fitted. 

o Lumped network, where the system is partitioned in a number of isothermal lumps (a 

discrete step-wise T-field). 

 Differential methods, where the heat equation is solved (sometimes by integration, but the PDE is 

apparent), instead of the integral energy equation. Among them, the most used are: 

o Residual minimization. 

o Finite differences. 

o Finite elements. 

o Boundary elements. 

 

Another classification may be in terms of the continuity of the base functions as: global methods (global 

fitting and residual minimization), and local methods (or partition methods; all the others). The great 

advantage of local methods is that the base functions can be very simple (often linear). The first step in all 

local methods is a spatial discretisation of the domain, followed by node assignment (one central or 

boundary node in the finite difference method, several nodes in the finite element method, at least one at 

each end), and the choice of base functions, to be explained below. 

 

There are other integral methods, like the Rayleigh-Ritz method, which are based on a variational 

formulation of the problem if it exists (e.g. minimising the potential energy in mechanical problems or 

minimising the generation of entropy in thermal problems). The variational functional contains all the 

information (PDE plus boundary conditions), e.g. E=∫f(x,y,y')dx=min, and the unknown coefficients in the 

temperature fitting are found by directly minimization of the variational, instead of through the equivalent 

Lagrange equation, f/yd(f/y')/dx=0. 

Global fitting 

In the global fitting method, we try to solve the global energy balance equation d dE t Q W  , instead of 

the local energy balance that yielded the heat equation (3); i.e. we try to fit the T-field with a suitable 

multi-parametric function defined in the whole domain, e.g., T(x,y)=((aijx
iyj)), and the fitting 

coefficients (in this case the polynomial coefficients) are found by forcing just the global energy balance 

and some particular boundary conditions of the problem (it is better if the base function already satisfies 
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the boundary conditions). Unless one succeeds in choosing a 'good' global function, the approximation is 

usually poor and one has to divide the domain in small elements to be able to use simple fitting functions. 

A good start is by choosing the most simple function that can accommodate the known boundary 

conditions. In a sense, global fitting is a kind of integral method, since the global energy balance is 

obtained by integration of the heat equation to the whole domain (the heat equation was derived 

inversely). 

 

For our sphere-cooling problem the integral method gets complicated because a simple T-field cannot be 

found that is good for short times (when the cooling wave travels from the surface to the centre of the 

sphere), and for larger times (when the whole sphere is cooling down). We are going to apply the integral 

method to the very short times of cooling penetration, namely, those for which the one-dimensional 

planar semi-infinite model applies. 

 

For the planar semi-infinite problem of a step change in surface temperature of a constant-property solid 

initially at T∞ and suddenly brought to T0, we want to fit the T-field by 

T(x,t)=c0+c1(x/X)+c2(x/X)2+c3(x/X)3, with the ci-coefficients being time-dependent, and X being the 

penetration of the thermal change relative to the initial state. Instead of the PDE (solved in Example 8 in 

Heat and Mass Transfer), we only make use here of the boundary conditions, T(0,t>0)=T0, 

2T(x,t)/x2|x=0=0, T(X,t>0)=T∞, T(x,t)/x|x=X=0, to get the coefficients in terms of the penetration depth 

X, and of the energy balance, [AdxcT(x,t)]/t=kAdT(x,t)/x|x=0, to get the time-evolution of the 

penetration depth, once the fitted approximation, T(x,t)=T∞+(T0T∞)(1(3/2)(x/X)+(1/2)(x/X)3), is 

substituted in the global energy balance; namely, ( ) 8X t at , what can be compared with the exact 

solution obtained in Example 8 in Heat and Mass Transfer. 

 

For our rod-heated-at-one-end problem, if we assume that the T-field at steady state can be approximated 

just by a constant, T(x)=c0, imposing the main constrain in the problem, the global energy balance, 

 in out 0Q Q Q hpL T T    , one gets the solution:  0T T Q h DL  = 288+10/(20··10-2·10-1)= 

447 K (to be compared with the analytical result later). If we assume that the T-field at steady state can be 

approximated by T(x)=c0+c1x, imposing the main constrain in the problem, the global energy balance, 

 in out 0
0

( )
L

Q Q Q hp T x T dx    , and an additional one, the local condition at x=0, 

0 10
/

x
Q kA T x kAc


      , one gets the solution: T(x)=(478636x) K (with x in metres; to be compared 

with the analytical result later). If we assume that the T-field at steady state can be approximated by 

T(x)=c0+c1x+c2x
2, imposing the main constrain in the problem, the global energy balance, 

 in out 0
0

( )
L

Q Q Q hp T x T dx    , and two additional ones, the local condition at x=0, 

 0 1 2 100
/ 2

xx
Q kA T x kA c c x kAc


         , and the local condition at x=L, / 0

x L
kA T x


    , one 

gets the solution: T(x)=(468636x+3183x2) K (with x in metres). The above three numerical 

approximations are shown in Fig. 9 compared with the exact analytical solution, presented in Table 4 

(Case 3). As said before, there is little benefit in going to higher-order polynomials, and it might be 

counterproductive, indeed. 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c11/Heat%20and%20mass%20transfer.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c11/Heat%20and%20mass%20transfer.pdf
http://imartinez.etsiae.upm.es/~isidoro/bk3/c11/Heat%20and%20mass%20transfer.pdf
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Fig. 9. Comparison of three progressive numerical approximations with the exact solution 

for the rod-heated-at-one-end problem, at the steady state.  

 

One-dimensional steady-state problems of heat transfer give just ordinary differential equations with 

boundary values. In this case, besides all numerical methods being studied here, the old shooting method 

may be applied, what is the transformation of a boundary-value problem into an initial-value problem: the 

ordinary differential equations are integrated with assumed initial conditions to find end-conditions that at 

first do not verify the data, but give a residue that can be cancelled by iterations in a root-finder approach. 

The shooting method may be thought also as a local approximation where the coefficients ui are 

sequentially found by an Euler or Runge-Kutta forward extrapolation. 

 

Of course, the global ad hoc fitting can be extended to include several dimensions and transient effects. 

For instance, one may try T(x,r,t)=T∞+(a0+a1x+a2x
2)·(b0+b1r+b2r

2)·(1exp(ct)) for our rod-heated-at-

one-end problem, to find, on top of the axial T-profile, a radial T-profile and their time variation from 

initial rest with the heater off, to the steady state after the heater is set on, with the result: 

T(x,r,t)=288+(180636x+3183x2)·(1109r2)·(1exp(0.0033t)), where b0 is chosen equal to unity from 

redundancy in the coefficients, b1 is equal to zero to preserve axial symmetry, b2 is computed from the 

radial energy balance, 
0 / 20

/
L

r D
Q kp T r dx


    , and c is computed from the initial energy balance when 

the heater is switched on, 
0 0, 00

/ d
L

t r
Q Ac T t r

 
   . Notice however, how clever the choice of the time 

function has been, already incorporating an exponential temperature increase from rest to steady state.  

 

Finally notice that any numerical method involving only linear equations can be solved explicitly in the 

parameter variables, and not only numerically, but this advantage is of little help with cumbersome 

expressions. For instance, the latter solution in algebraic form is:  

 

0
1 2 3( , , ) ( ) ( ) ( )

Q L
T x r t T f x f r f t

kA
  , with  3( ) 1 exp 4f t BiFo   , 

hD
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k
 , 

2

kt
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cD
   

2

2 ( ) 1
4 / 2

Bi r
f r

Bi D

 
   

  
, and 

2 2

1

1 1 1 1
( ) 1

2 8 4 3 12 4 16

Bi x Bi x Bi D
f x

L L L Bi

           
                  
           

 (74) 
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Lumped network 

In the lumped-network method (LNM), a partition of the domain is made in a few elements, manually 

defined and each of them assumed having uniform temperature, the interactions amongst them manually 

computed, and the set of coupling algebraic equations automatically solved. It is only used for well-

conducting sets of pieces (nearly isothermal in practice), allowing highly nonlinear effects (e.g. radiation 

coupling). 

 

For our rod-heated-at-one-end problem, if we assume that the T-field is approximated by three isothermal 

lumps at T0, T1, and T2, each comprising a third of the rod, these values can be computed by imposing the 

energy balances and conductive couplings among them: 

 

 0
0 0 1

d

3 d 3

TL L
cA Q hp T T Q

t
      

 1
1 1 2

d

3 d 3

TL L
cA Q hp T T Q

t
      

 2
2 2

d
0

3 d 3

TL L
cA Q hp T T

t
      

0 1 1 2
1 2with   &

/ 3 / 3

T T T T
Q kA Q kA

L L

 
   (75) 

  

At steady state, we can solve the system of five equations with five unknowns, with the solution: T0=460 

K, T1=447 K, T2=433 K, 
1Q =6.4 W (the heat flux passing from the first to the second lump), and 

2Q =3.1 

W (the heat flux passing from the second to the third lump). A comparison of this numerical solution with 

the exact solution is shown in Fig. 10. Notice that, as before, analytical expressions can be obtained for 

the lumped parameters in linear systems. 

 
Fig. 10. Comparison of a three-lump numerical approximation with the exact solution for 

the rod-heated-at-one-end problem.  

 

Related to the lumped network is the more structured finite volume method (FVM), where a partition of 

the domain is made in a regular mesh, e.g. a square mesh of size h in 2D, and the integro-differential 

equation of energy balance, e.g. cVdTi/dt=QAi, is applied to each element, which is considered to have 

uniform temperature Ti. The heat exchanges with the neighbours are averaged with a mean thermal 

conductivity and mean thermal gradient. For simple averaging, the FVM usually yield the same nodal 



Heat conduction page 38 

equations as the FDM, the difference been in the strictly mathematical approach in FDM and the more 

physical one in FVM.  

Spectral methods 

Most numerical methods asymptotically approach the continuous solution by a spatial discretization of 

the function, but spectral methods do it by a discrete series of continuous functions with appropriate 

coefficients (the set of coefficients is seen as the 'spectrum' of the solution), as set in (73). The main 

advantage of using continuous base functions is the easiness of derivation (recall we are dealing with 

complicated PDE).  

 

Spectral methods try to approximate the function (solution) by increasing the number of modes or 

parameters in a given space of functions, e.g. approximating T(x)=aix
i and increasing the number of 

terms i, or better using orthogonal functions like T(x)=aisin(ix), etc. Although any function can be 

approximated by an infinite series expansion of any kind, if the base functions are orthogonal the 

coefficients in the series are uncoupled and a lot of work is saved (they can be found independently, and 

if their number is increased, only the added ones must be computed).  

 

Spectral methods usually take the domain globally (i.e. one element with multi-parametric base function), 

but some new methods take a local approach, in combination with spatial methods. The handicap of 

spectral methods is that for a multi-parametric fit of a global base function, unless one succeeds in 

choosing a ‘good’ global function, the approximation is usually poor and misleading (e.g. with ripples), 

and it is better to divide the domain in small elements to be able to use simple fitting functions (spatial 

methods), e.g. piece-wise linear polynomials for second order PDE.  

Residual fitting 

As in the global fitting method, we try to fit the T-field with a suitable multi-parametric function defined 

in the whole domain, ( , ) ( ) ( )i iT x t c t x , but the coefficients now are determined by minimization of 

the residuals obtained when the fitting function is substituted into the differential form of the problem:  

 

  
1

( ) ( ) , min, for independent 
N

i i i

i

PDE c t x R x t c


 
  

 
  (76) 

 

where the minimization of the N-degree-of-freedom residual is accomplished by weighted averaging in 

the spatial domain: 

 

    , , 0, 1..iw x R x t i N    (77) 

 

where wi are the weighting functions and <wi,R> is the projection or scalar product.  

 

For instance, for our rod-heated-at-one-end problem at the steady state, the differential problem was 

stated as (25): 
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  
2

02

0

d d d
0 with  & 0

d d dx x L

T hp T T
T T Q kA kA

x kA x x


 

         (78) 

 

If we chose as fitting function T(x)=c0+c1x+c2x
2, imposing the two boundary conditions we get 

2 0 /(2 )c Q kLA  and 
1 0 /( )c Q kA , and the other coefficients (only c0 here) are obtained by proper 

minimization of the following weighted residual, R(ci):  

 

    
2

2

0

d ( )
( ) ( )

d

x L

i i

x

T x hp
R c T x T w x dx

x kA







 
   

 
  (79) 

 

obtained by integration, over the whole domain (here the length of the rod), of the differential equation 

that should be zero if exact, multiplied by some appropriate weighting functions, wi(x), which can be 

chosen following different approaches, to be explained below: 

 

 

   

 

 

   method of collocation, and finite differences (FDM)

/      method of least squares (LSM)

( )          method of finite elements of Galerkin (FEM)

i i

i i

i i

w x x x

w x R u

w x x



 



 







  (80) 

 

If we substitute our numerical values in (79) yields R(ci)=∫(1789040c0+25460x127000x2)wi(x)dx. 

Collocation method 

In this case, wi(x) in (79)-(80) are just delta functions at each of a discrete-set of points where we want to 

cancel the residual R(ci). As we only have one remaining coefficient in our example, c0, we impose the 

cancellation of the residual at, say, the mid-point in the rod, x=L/2, obtaining 
2 2

0 0( /( ))(3/8 1/( ))c T Q L kA m L   , which, by substitution of our sample-problem data finally yields 

T(x)=471636x+3183x2 with x in metres, to be compared with the exact solution in Fig. 11 below. 

Least square method (LSM) 

In this case, wi(x) in (79)-(80) coincides with the PDE residual, i.e. the sought coefficients are found by 

minimization of the integration of the squares (least square method): 

R(ci)=∫(1789040c0+25460x127000x2)2dx=min. As we only have one remaining coefficient, c0, we 

impose R(ci)/c0=0, obtaining 2 2

0 0( /( ))(1/3 1/( ))c T Q L kA m L   , which, by substitution of our 

sample-problem data finally yields T(x)=468636x+3183x2 with x in metres, to be compared with the 

exact solution in Fig. 11 below. 

Galerkin method 

In this case, wi(x) in (79)-(80) are each of the base functions of the unknown terms used for the T-field, 

i.e. wi(x)≡i(x) with ( , ) ( ) ( )i iT x t c t x . Here we have used as i(x) the monomials 1, x and x2, but only 

the independent term c0 was left unknown, thus, for the Galerkin method we must solve 

R(ci)=∫(1789040c0+25460x127000x2)dx=0. It happens for this example that this solution coincides with 

the least square solution. Figure 11 shows the different approximations using the residual fitting 

approach, in comparison with the exact analytical solution. 
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Fig. 11. Comparison of two numerical approximations (collocation and least square) using 

T(x)=c0+c1x+c2x
2, with the exact solution for the rod-heated-at-one-end problem at the steady 

state (Case 3 in Table 4). 

Finite differences 

In the finite difference method (FDM), invented by Courant et al. in 1929, the partial differential equation 

is discretized term by term, substituting each derivative by its truncated Taylor expansion. The minimum 

order for time derivatives is a linear approach, usually advanced in time, namely T/t≈(T(t+t)T(t)/t, 

whereas for spatial derivatives at least a second order development is needed to approach second-order 

derivatives, 2T/x2≈(T(x+x)T(x)+T(xx))/(x)2; first order derivatives are usually approximated by 

a central difference, T/x≈(T(x+x)T(xx))/(2x), to avoid bias when choosing forward or backward 

differences. Notice that, although the central difference is a better approximation (2nd order) than either 

the forward or backward differences (1st order), using it for time would complicate too much the 

computation. Higher-order discretisation of the derivatives provide a more precise fitting of the function, 

at the expense of more complication (but the overall computing resources may be reduced if a coarser 

grid is good enough). 

 

The FDM can be also viewed as a discretized mesh with the PDE integrated at each finite volume. To 

each finite volume, a nodal point is assigned, to which the unknown temperature is attributed, as in the 

lumped network approach. The FDM yields a highly structured system of equations, particularly when a 

regular mesh is used, what has its pros and cons: the main advantage is the simple formulation of the 

method, what renders it the basic numerical method to solve PDEs; the penalty is that FDM demands a 

simple geometry with a structured grid, i.e. FDM becomes complicated in systems with non-rectangular 

(or non-cylindrical, or non-spherical) geometries.  

 

FDM starts by establishing a mesh of nodes in the domain, i.e. a set of points in space where the function 

is to be computed. There should be a node where the function is sought; at least one node at each 

boundary or singularity, plus a few others for better resolution. Although not mandatory, it is most 

advisable to use a regular mesh to simplify the coding. To each node, a material element is ascribed; to 

each node a thermal inertia is assigned, and to each pair of nodes a thermal conductance is assigned. The 

finite difference discretization of the PDE provides the energy balance to every generic (internal) node; 

the energy balance must be set aside for each special (interface) node, which are really the most 

characteristic data in a problem. It is advisable to include one artificial node at each extreme to represent 
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the boundary conditions at infinity. A regular spatial mesh is used, e.g. a square mesh of size h in 2D, and 

derivatives approximated by finite differences, centred in the node, or from one side (forward or 

backward). For instance, the Laplace operator is approximated at every standard internal node (marked by 

its x-step position i and its y-step position j), using centred differences, by: 

 

        

2

2 1 1 1 1

1
4T

h
T T T T Ti j i j i j i j i j i j, , , , , ,d i  (81) 

  

a simple discretization that becomes cumbersome when applied to boundary nodes if the geometry is not 

rectangular; e.g., for boundary nodes that have only a fraction f of an h-step in the North-South-East-West 

neighbour, the Laplace operator should be approximated by: 
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and becomes even more awkward because, for a regular mesh in an irregular domain, a mesh refinement 

doesn't include all previous nodes in the boundary).  

 

For a steady problem with N nodes, the set of N algebraic equations with N T-unknowns can be solved 

directly by matrix inversion, or indirectly by an iterative method, for instance using 

Ti,j,new=(Ti-1,j+Ti+1,j+Ti,j-1+Ti,j+1)/4 to solve for Laplace equation, 2T=0. An iterative relaxation method in 

which Ti,j,better=Ti,j,new+w(Ti,j,newTi,j,old), with a weighting factor 0<w<1, is usually the best. 

 

For transient problems, the computation of temperature at the nodes at time t+t can be based on T-values 

at time t (the explicit method, the most used, although it may become unstable), can be based on T-values 

at time t+t (the implicit method, always stable but requiring the inversion of a matrix), or in a wise 

combination of the two, named the Crank-Nicholson method. A general stability criterion for the explicit 

method is that every central coefficient (what multiplies Ti,j at previous time t) be non-negative (≥0); in a 

one-dimensional case with convective ends, that coefficient is (12Fo(1+Bi)), with Fo=at/x2 and 

Bi=hx/k, and thus Fo<1/(2(1+Bi)), what means that very small time increments and a lot of time steps 

are required (doubling the number of nodes, multiplies by four the computation time).  

 

The stability criterion can be explained in terms of the Second Law of Thermodynamics if we imagine the 

thermal relaxation of a node at T1 with the surroundings nodes at T0<T1 (2 in one-dimensional problems); 

the discretized heat equation can be written as tT/t=2axT/(x)2, but the Second Law forbids the 

temporal variation tT to surpass the spatial variation xT, i.e. tT<xT, implying 2at/(x)2<1 or 

Fo<1/2. 

 

For our rod-heated-at-one-end problem, we pass from the partial differential formulation of the problem: 
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to the finite difference formulation, or nodal equations, either built as an energy balance of the finite 

volumes: 

 

 
1

1 1

j j j j j j
ji i i i i i

ixc k k hp x T
t x x

     
   



 


  
     

  
 

01 0 1
0with , 0 ,

j j j j

N N
iQ kA kA T T

x x

    


 
    

 
 (84) 

  

or directly by Taylor expansion of the PDE formulation: 
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by establishing the mesh of nodes with the guidelines given above (superscript j is for time steps and 

subscript i for spatial steps), as shown by the large dots in Fig. 12.  

 

 
Fig. 12. Finite difference discretization for the rod-heated-at-one-end problem.  

 

From the initial T-field, T(x,0), the new T-values at time t+t can be explicitly stated in terms of the older 

T-values, or implicitly stated in terms of the present T-value; in any case, special care for the boundary 

nodes is required. Introducing Fo≡at/(x)2 and ≡2Fo(1+(2hR/k)(x/R)2), the explicit formulation in 

our example (Fig. 12) is: 
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whereas the implicit formulation is:  
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where factor 2 in the boundary equations (first and last rows in the matrices) come from those nodes 

being chosen to have half the mass of the other (see Fig. 12). The implicit formulation requires the 

inversion of a big matrix, although in our case (and in many other) it is a tri-diagonal matrix quickly 

inverted, the explicit formulation not requiring such an inversion, but demanding a very small time step to 

avoid instability in the iteration, guarantying at least Fo≡at/(x)2<1/2, what, with our rod-heated-at-one-

end problem data and having chosen x=L/5=0.02 m, means that t<(x)2/(2a)=2.4 s, demanding a lot of 

iterations to reach the steady state (formerly evaluated in Exercise 3 in Heat and Mass Transfer to be 

some 1200 s). A better approximation, using N=20 instead of N=5, and 10 000 time steps, is presented in 

Fig. 13. 
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Fig. 13. Comparison of a finite difference numerical approximation with the exact solution for 

the rod-heated-at-one-end problem.   

 

Example 3. Satellite platform with embedded battery modules. 

Example 4. Thermal transients in a CFRP wall. 

Example 5. Printed circuit board with central dissipation. 

Example 6. Printed circuit board with two larce integrated circuits 

Example 7. Kapton heater between plates 

Finite elements 

The finite elements method (FEM, also known as finite element analysis, FEA), invented by Courant in 

1943, is based on the Galerkin procedure to minimise residuals, seen above. In the simplest FEM 

formulation, the spatial domain is discretized in triangles (for 2D domains), and the base functions are 

chosen as linear unitary local functions (i.e. zero outside their associated element). Notice that the 

subsystem in FEM is a mass between nodal points at the corners, whereas the subsystem in FDM is a 

mass around the nodal point. 

 

Standard algorithms exists to mesh any irregular domain, and because here the approximation is by 

integration (that with suitable base functions may be done locally in each element without any 

directionality) instead of by differentiation (that is a directional operation based on all neighbour 

elements), the procedure to do it automatically is well developed. The task is massive but simple (ideal 

for computers), thus finite element is the preferred numerical method for (non-singular) engineering 

problems, particularly for multidisciplinary computations (mechanical, thermal, fluid-dynamic, 

electrical). Typical commercial FEM-packages are: ABAQUS, ANSYS, FEMLAB, FLUENT, 

MSC/NASTRAN... These packages usually cover a wide spectrum of possibilities (e.g. materials 

properties and heat sources varying with time), and they solve very general PDE like: 
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   (88) 

 

Example 8. Insulated box with internal heating 

http://imartinez.etsiae.upm.es/~isidoro/bk3/c11/Exercise3.pdf
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Boundary elements 

Because a given set of boundary and initial conditions uniquely define the solution in the domain, the 

value of the function at any point in the interior can be expressed as a sole contribution of boundary 

values, what is achieved mathematically by the Green-Stokes-Gauss-divergence theorem, which is the 

foundation of the boundary elements method (BEM). With this method, first the full solution (function 

and derivatives) at the boundary points are computed by a kind of finite-element method where the base 

functions are the fundamental solutions of the PDE at the boundary nodes, then solving a set of algebraic 

equations at the nodes, and finally, if needed, the value at any internal point is directly computed by a 

quadrature (without interpolation). The problem with the boundary element method is that the local 

integration in the boundary are more involved than in the standard FEM because there are singular points 

that require more elaborated computations. Other handicap is that the BEM only applies to regions of 

constant properties. The great advantage is that for bulky domains the number of nodes significantly 

decreases, particularly for infinite domains (what explains its massive use in external fluidmechanics and 

geomechanics). Incidentally, for infinite domains, besides the BEM, one may also resort to classical FEM 

with a truncated domain progressively enlarged, or matched to an asymptotic analytical expansion, or 

stretching the external elements with a log-transformation. 

 

Back to Heat and mass transfer 

Back to Thermodynamics 
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